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1 Tanner Codes

Quantum Tanner codes are based off of classical Tanner codes. A Tanner code is a classical
code based off a graph G. A Tanner code can be defined on a generic graph or on a bipartite
graph. We will use the bipartite graph approach. Let G = (V,E), where V = L ⊔R and all
edges in G are between L and R, i.e. (u, v) ∈ E implies u ∈ L, v ∈ R or vice-versa. We shall
also assume that |L| = n|R| and that G is r-regular.

The number of edges in G is |E| = n · r = |L| · r = m. We define E(u) to be the set of
edges incident to u. To each edge we shall associate a bit. Codewords are defined by the bit
string attained from the bits associated to each edge. So, the codewords have length m.

Definition 1.1. Let G = (L,R,E) be an r-regular bipartite graph. Let C0 ⊂ {0, 1}r be a
‘base’ code. Then, a Tanner code is

TC(G,C0) = {c ∈ {0, 1}|E| : ∀v ∈ L ∪R, c
∣∣
E(v)

∈ C0}.

That is, the Tanner code is the set of |E|-bit strings such that for each vertex, the bits
associated to the edges incident to that vertex are in the base code C0. It is implied that for
each vertex there is a known ordering of the edges that decides the order of the bits.

Fact 1.2. If C0 is linear, then TC(G,C0) is linear.

Proof. Let c, c′ ∈ TC(G,C0). Note that for any v, we have (c + c′)
∣∣
E(v)

= c
∣∣
E(v)

+ c′
∣∣
E(v)

∈
C0.

Another way to see that the Tanner code is linear is by writing down its parity checks.
Since C0 is linear, there are r− dim(C0) linearly independent parity checks. So, to check if a
given string is a code word in the Tanner code, we just need to check that the edges on each
vertex satisfy the parity checks. Since there are 2n vertices, there are at most 2n(r−dim(C0))
linearly independent parity checks (we say at most, since it may turn out that some parity
checks are implied by others).

Fact 1.3. We have

dim(TC(G,C0)) = #bits−#linearly independent parity checks ≥ m− 2n(r − dim(C0)).
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Write dim(C0) = r · R0 for 0 ≤ R0 ≤ 1. The bigger R0 is, the better a code C0 is since
this means it encodes more bits. Then,

m−2n(r−dim(C0)) = nr−2n(r−dim(C0)) = nr(1−2(1−R0)) = nr(2R0−1) = m(2R0−1).

So, if we want dim(TC(G,C0)) ∈ Ω(m), then we need R0 ∈ (1
2
, 1].

We want the code to not only have good dimension but also good distance. Getting good
dimension is fairly easy, as we just showed; getting good distance is harder. We have to be
careful about what graphs we use. Suppose C0 has good distance ∆0 ·r and let c ∈ TC(G,C0)
be nonzero. We want to argue that c has high (Hamming) weight, since this implies that the
Tanner code has good distance.

Since c is nonzero, at least one edge e in the graph is assigned a 1. Let e = (u, v) ∈ L×R
and note that since c

∣∣
E(u)

∈ C0, we have |c
∣∣
E(u)

| ≥ ∆0 · r. So, knowing that at least one edge

incident to u ∈ L is assigned a 1 implies that many edges are assigned 1. Each outgoing edge
with a 1 on it meets a vertex vi ∈ R, i = 1, . . . ,∆0 · r. Applying the same argument to the
vertices vi shows that c must have very high weight, however this only holds if most of the
edges with a 1 incident to each vi all meet different vertices in L. That is, it may be the case
that the graph has two sets of vertices S ⊂ L and T ⊂ R that only share edges with each
other.

So, the idea is to look for graphs such that for small sets S ⊂ L, T ⊂ R, most edges from
S go outside of T , i.e. E(S, T ) = {edges between S and T} is small. This will prevent the
bad situation from before where all edges with weight 1 are shared between two small sets.
A good place to start is to look at random graphs.

Let G be a random r-regular bipartite graph. We calculate

E[|E(S, T )|] = |S| · r · |T |
n

,

this follows since |S| · r is the number of edges coming out of S, and |T |/n is the average
fraction of those edges that go into T .

Definition 1.4. We say that a graph G = (L,R,E) is ε-pseudorandom if ∀S ⊂ L,∀T ⊂ R,
we have ∣∣∣∣|E(S, T )| − |S| · r · |T |

n

∣∣∣∣ ≤ εr
√

|S| · |T |.

Observe that we allow the ‘error’ to be larger if r, |S|, or |T | is large.

Assuming that G is ε-pseudorandom, we show that the Tanner code TC(G,C0) has
good distance. Set S = {u ∈ L : c

∣∣
E(u)

̸= 0} and T = {v ∈ R : c
∣∣
E(v) ̸=0

}. Observe that

|c| ≥ max{|S| ·∆0 · r, |T | ·∆0 · r}, so in particular, |c| ≥
√

|S| · |T |∆0 · r. We show that most

edges with a 1 go between S and T and hence
√

|S| · |T |∆0 · r ≤ |c| ≤ |E(S, T )|.
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By the ε-psuedorandomness, we have

∆0r
√

|S| · |T | ≤ |c| ≤ |E(S, T )| ≤ r

n
|S| · |T |+ εr

√
|S| · |T |

⇒ (∆0 − ε)r
√
|S| · |T | ≤ r

n
|S| · |T |

⇒ (∆0 − ε)n ≤
√

|S| · |T |.

So, either |S| or |T | is very large. Also, observe that this implies

|c| ≥ ∆0r
√
|S| · |T | ≥ ∆0r(∆0 − ε)n = ∆0(∆0 − ε)m.

So, if the base code has constant distance ∆0 and the underlying graph is ε-pseudorandom
with ε < ∆0, then the distance of the Tanner code = const·m.

2 Expander Graphs

Intuitively, an expander graph is a graph in which any small set of vertices has a large
neighborhood.

Fact 2.1. Let G = (V,E) be a graph. Its adjacency matrix is given by

A(G) =

{
1 if (u, v) ∈ E)

0 otherwise,

where the rows and columns are indexed by the vertices in V . We observe that A(G) is an
n× n real, symmetric matrix and therefore has eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn.

Fact 2.2. If G is r-regular, the vector v = [1 1 . . . 1]T is an eigenvector with eigenvalue
λ1 = r.

Proof. Since G is r-regular, each row has exactly r entries equal to 1 and the rest are 0. So,
A(G)v = rv.

Definition 2.3. A graph G is a λ-spectral expander if λ = max{λ2, |λn|} is small.

Example 2.4. Consider a graph G with k connected components V1, . . . , Vk. Then, there
are k eigenvectors of the form vj = [a1 . . . an]

T where ai = 1 if and only if i ∈ Vj, i.e. the
vector which is 1 only on the vertices in Vj. The associated eigenvalues are |Vj|. So, if there
are at least two large connected components, the largest two eigenvalues are not small and so
G is not an expander.

Definition 2.5. The double cover of a graph G = (V,E) is a bipartite graph G′ = (VL, VR, E
′)

where |VL| = |V | = |VR|. To each edge v ∈ V , we associate a vertex vL ∈ VL and a vertex
vR ∈ VR. We have that (uL, vR) ∈ E ′ ⊂ VL × VR if and only if (u, v) ∈ E. The bipartite
adjacency matrix of the double cover has its rows indexed by vertices in VL and the columns
indexed by the vertices in VR, with a 1 entry if and only if (vL, vR) ∈ E ′. In particular the
bipartite adjacency matrix of G′ is just the adjacency matrix A(G) of G.
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Fact 2.6. If G = (V,E) is a λ-spectral expander, then its double cover is (λ
r
)-pseudorandom.

Proof. Let A(G) be the adjacency matrix of G and expand it in an eigenbasis.

A(G) =
n∑

i=1

λi |vi⟩ ⟨vi| ,

where we know that λ1 = r and we normalize |v1⟩ = 1√
n
[1 . . . 1]T = 1√

n
(|1⟩+ · · ·+ |n⟩). Let

S, T ⊂ V and define

|S⟩ =
∑
i∈S

|i⟩ .

Then,

|E(S, T )| = ⟨S|A(G) |T ⟩ =
n∑

i=1

λi ⟨S|vi⟩ ⟨vi|T ⟩

= λ1 ⟨S|v1⟩ ⟨vi|T ⟩+
∑
i≥2

λi ⟨S|vi⟩ ⟨vi|T ⟩

=
r

n
|S| · |T |+

∑
i≥2

λ ⟨S|vi⟩ ⟨vi|T ⟩

Therefore,

∣∣∣|E(S, T )| − r

n
|S| · |T |

∣∣∣ = ∣∣∣∣∣∑
i≥2

λi ⟨S|vi⟩ ⟨vi|T ⟩

∣∣∣∣∣
≤

∑
i≥2

|λi| · | ⟨S|vi⟩ | · | ⟨vi|T ⟩ |

≤ λ
∑
i≥1

| ⟨S|vi⟩ | · | ⟨vi|T ⟩ |

≤ λ

√∑
i≥1

| ⟨S|vi⟩ |2
√∑

i≥1

| ⟨vi|T ⟩ |2

= λ

√∑
i≥1

⟨S|vi⟩ ⟨vi|S⟩
√∑

i≥1

⟨T |vi⟩ ⟨vi|T ⟩

= λ
√

⟨S|S⟩
√

⟨T |T ⟩
= λ

√
|S| · |T |

=
λ

r
r
√
|S| · |T |.
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Example 2.7. Another example of a graph which is not an expander graph is any r-regular
bipartite graph. By regularity, |L| = |R|, so the vector v = [1 1 . . . − 1 − 1]T (the 1’s are in
positions indexed by vertices in L and the −1’s are in positions indexed by vertices in R) is
an eigenvector with eigenvalue −r.

We care about expander graphs since there are known efficient algorithms for generating
expander graphs. Recall the distance of the Tanner code is given by ∆0(∆0 − ε)m, while the
dimension is m(2R0 − 1). So, if the inner code has good distance ∆0 and rate R0, our work
above shows that we can efficiently generate a good Tanner code.
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